Wed. Nov 30th, 2022

New York, May 24, 2022 (GLOBE NEWSWIRE) — Reportlinker.com announces the release of the report “Single-Use Downstream Bioprocessing Technology Market by Type of Product, Scale of Operation and Key Geographical Regions : Industry Trends and Global Forecasts, 2022-2035” –
The increased number of approvals and ongoing clinical trials demonstrate the growing popularity of novel treatment options for a variety of ailments and diseases. As a result, several stakeholders have opted to modernize their conventional biomanufacturing technologies in order to cope up with the increasing demand for biologics and to reduce the cost and time involved in bioprocessing. One such example is the use of single-use technology for various upstream and downstream processes involved in biologics manufacturing. The use of single-use technologies in biopharmaceutical manufacturing has been steadily increasing over the years. Specifically, the adoption of single-use technology in downstream bioprocessing has witnessed a remarkable increase in the last few years. Single-use downstream technologies offer various advantages over the traditional stainless-steel technologies, such as reduction in CO2 emissions (by 35%), reduction in project lead time (by 8 months), removal of cleaning and sterilization expenditure throughout the development stage, increased productivity, less labor intensive, and low risk of contamination.

Given the various benefits of single-use downstream bioprocessing technology and its increasing adoption, several companies have developed and launched their proprietary single-use products, such as single-use chromatography systems, single-use filtration systems, single-use sampling systems, single-use connectors and single-use centrifugation systems, for the faster production of finished and high-quality biologics intended for the treatment of a wide array of disease indications. In addition, some stakeholders have also taken initiatives to automate their single-use systems, by introducing several key features, such as visual data display, remote accessibility, data processing capability, built-in system control sensors, irradiation (gamma or x-ray), provision for alarms / alerts and input / output compatibility in order to make the equipment more user friendly. Driven by the increasing adoption of single-use technology and the ongoing efforts to enhance features and capabilities of various single-use equipment, the opportunity within this market is likely grow at a noteworthy pace over the coming years.

SCOPE OF THE REPORT
The “Single-Use Downstream Bioprocessing Technology Market by Type of Product (Single-use Chromatography Systems, Single-use Filtration Systems, Single-use Sampling Systems and Single-use Connectors), Scale of Operation (Preclinical / Clinical and Commercial) and Key Geographical Regions (North America, Europe, Asia-Pacific, Latin-America, Middle East and North Africa and Rest of the World): Industry Trends and Global Forecasts, 2022-2035” report features an extensive study of the current landscape and the likely future potential of single-use downstream bioprocessing technology and equipment developers, over the next 13 years. The study also features an in-depth analysis, highlighting the capabilities of various industry stakeholders engaged in this field. In addition to other elements, the study includes:
A detailed assessment of the market landscape of single-use chromatography systems based on a number of relevant parameters, such as product / device dimensions, flow rate, volume range, pressure, weight, mode of operation (batch, fed-batch and continuous), scale of operation (preclinical, clinical and commercial), key features (scalability, visual data display, remote accessibility, data processing capability, built-in system control sensors, I / O compatibility and provision for alarms / alerts)and application area (monoclonal antibody production, vaccine production, cell and gene therapy, therapeutic protein / hormone and others). In addition, it presents details on the companies developing single-use chromatography systems, highlighting their year of establishment, company size, and geographical location.
A detailed assessment of the market landscape of single-use filtration systems based on a number of relevant parameters, such as filter pore size, type of membrane construction material, type of connector used, maximum temperature, pressure range, type of filter (membrane, capsule, cartridge and cassette), scale of operation (preclinical, clinical and commercial), key features (sterilizability, irradiation (gamma or x-ray), easy organization and fast aseptic connectors) and application area (monoclonal antibody production, vaccine production, cell and gene therapy, therapeutic protein / hormone and others). In addition, it presents details on the companies developing single-use filtration systems, highlighting their year of establishment, company size, and geographical location.
A detailed assessment of the market landscape of single-use sampling systems, based on several relevant parameters, such as type of sampling unit (bag, bottle, tube-transfer and syringe), type of sterilizability (irradiation (gamma or x-ray) and autoclavability), key features (scalability and pre-assembled), volume range and tubing material. The chapter also presents details on the companies involved in the development of single-use sampling systems, based on their year of establishment, company size, and geographical location. In addition, the chapter presents overview of the overall market landscape of single-use centrifugation systems.
A detailed assessment of the market landscape of single-use connectors based on number of relevant parameters, such as type of valve / gender (male, female and genderless), pack size, operating temperature, termination size, material of construction and application area (fluid transfer, sampling, process piping). In addition, it presents details on the companies developing single-use connectors, highlighting their year of establishment, company size, and geographical location.
A detailed competitiveness analysis of single-use chromatography systems, single-use filtration systems, single-use sampling systems and single-use connectors, taking into consideration several relevant parameters. For single-use chromatography systems, the parameters taken into account include the product strength (key features, mode of operation, scale of operation, elution method compatibility and application area) and supplier strength (company size and years of experience). For single-use filtration systems, the parameters taken into account include the product applicability (connectors used, type of filter, scale of operation, key features and application area) and supplier strength (company size and years of experience). For single-use sampling systems, the parameters taken into account include the product strength (sterilizability and key features) and supplier strength (company size and years of experience). For single-use connectors, the parameters taken into account include the product strength (type of valve / gender, easy to use, application area) and supplier strength (company size and years of experience).
Tabulated profiles of the key players providing single-use downstream bioprocessing technologies, which are headquartered in North America, Europe and Asia-Pacific. Each profile includes an overview of the company, information on the financial performance (if available), service portfolio, product portfolio, recent developments, and an informed future outlook.
An in-depth analysis of various patents that have been filed / granted for single-use downstream bioprocessing technology, till December 2021, highlighting key trends associated with these patents, across type of patents, publication year, application year, issuing authorities involved, type of organizations, emerging focus area, patent age, CPC symbols, leading patent assignees (in terms of number of patents granted / filed), patent characteristics and geography. It also includes a detailed patent benchmarking and an insightful valuation analysis.
A detailed brand positioning analysis of the key industry players (including single-use chromatography system developers, single-use filtration system developers, single-use sampling system developers and single-use connector developers), highlighting the current perceptions regarding their proprietary products by taking into consideration several relevant aspects, such as experience of the manufacturer, number of products offered, product diversity, and number of patents published.
An informed estimate on the current and future demand for biologics and demand-supply scenario for biologics manufactured using single-use downstream bioprocessing technologies, for the period 2022-2035.
One of the key objectives of the report was to understand the primary growth drivers and estimate the future size of single-use downstream bioprocessing technology / equipment market. Based on multiple parameters, such as overall downstream bioprocessing equipment market, and share of single-use technology, we have provided an informed estimate of the evolution of the market for the period 2022-2035. Our year-wise projections of the current and future opportunity have further been segmented on the basis of scale of operation (preclinical / clinical and commercial), type of product (single-use chromatography systems, single-use filtration systems, single-use sampling systems and single-use connectors), and key geographical regions (North America, Europe, Asia-Pacific, Latin America, MENA and Rest of the World). In order to account for future uncertainties and to add robustness to our model, we have provided three forecast scenarios, namely conservative, base and optimistic scenarios, representing different tracks of the industry’s growth.

RESEARCH METHODOLOGY
The data presented in this report has been gathered via secondary and primary research. For all our projects, we conduct interviews with experts in the area (academia, industry, medical practice and other associations) to solicit their opinions on emerging trends in the market. This is primarily useful for us to draw out our own opinion on how the market will evolve across different regions and technology segments. Wherever possible, the available data has been checked for accuracy from multiple sources of information.

The secondary sources of information include:
Annual reports
Investor presentations
SEC filings
Industry databases
News releases from company websites
Government policy documents
Industry analysts’ views

All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. Financial figures mentioned in this report are in USD, unless otherwise specified.

KEY QUESTIONS ANSWERED
Who are the leading players that offer single-use downstream bioprocessing technologies?
What are the different application areas where single-use downstream bioprocessing technologies can be employed?
In which regions, majority of the single-use downstream bioprocessing technology are developers located?
What is the relative competitiveness of different single-use downstream bioprocessing equipment?
How has the intellectual property landscape of single-use downstream bioprocessing technologies, evolved over the years?
What is the current demand and supply of biologics manufactured using single-use downstream bioprocessing technology?
How is the current and future opportunity likely to be distributed across key market segments?

CHAPTER OUTLINES

Chapter 2 is an executive summary of the key insights captured in our research. It offers a high-level view on the current state of the single-use downstream bioprocessing technology market and its likely evolution in the short to mid-term and long term.

Chapter 3 provides a general introduction to bioprocessing industry, covering details related to the current trends in the domain. The chapter provides difference between the stainless-steel technology and single-use technology. In addition, it also provides details on different types of single-use equipment. It emphasizes on various advantages and key challenges associated with the single-use technologies. Further, it discusses future perspectives of the single-use downstream bioprocessing technology.

Chapter 4 provides a detailed assessment of the overall market landscape of single-use chromatography systems based on a number of relevant parameters, such as product / device dimensions, flow rate, volume range, pressure, weight, mode of operation (batch, fed-batch and continuous), scale of operation (preclinical, clinical and commercial), key features (scalability, visual data display, remote accessibility, data processing capability, built-in system control sensors, I / O compatibility and provision for alarms / alerts) and application area (monoclonal antibody production, vaccine production, cell and gene therapy, therapeutic protein / hormone and others). In addition, it presents details on the companies developing single-use chromatography systems, highlighting their year of establishment, company size, and geographical location.

Chapter 5 provides a detailed assessment of the overall market landscape of single-use filtration systems based on a number of relevant parameters, such as filter pore size, type of membrane construction material, type of connector used, maximum temperature, pressure range, type of filter (membrane, capsule, cartridge and cassette), scale of operation (preclinical, clinical and commercial), key features (sterilizability, irradiation (gamma or x-ray), easy organization and fast aseptic connectors) and application area (monoclonal antibody production, vaccine production, cell and gene therapy, therapeutic protein / hormone and others). In addition, it presents details on the companies developing single-use filtration systems, highlighting their year of establishment, company size, and geographical location.

Chapter 6 provides a detailed assessment of the overall market landscape of single-use sampling systems, based on several relevant parameters, such as type of sampling units (bag, bottle, tube-transfer and syringe), sterilizability (irradiation (gamma or x-ray) and autoclavability), key features (scalability and pre-assembled), maximum volume range and tubing material. The chapter also presents details on the companies involved in the development of single-use sampling systems, based on their year of establishment, company size, and geographical location. In addition, the chapter presents overview of the overall market landscape of single-use centrifugation systems.

Chapter 7 provides a detailed assessment of the overall market landscape of single-use connectors based on a number of relevant parameters, such as type of valve / gender (male, female and genderless), pack size, operating temperature, termination size, material of construction and application area (fluid transfer, sampling, process piping). In addition, the chapter presents details on the companies involved in the development of single-use connectors, including information on their year of establishment, company size, and geographical location.

Chapter 8 features a detailed competitiveness analysis of single-use chromatography systems, single-use filtration systems, single-use sampling systems and single-use connectors, taking into consideration several relevant parameters. For single-use chromatography systems, the parameters taken into account include the product strength (key features, mode of operation, scale of operation, elution method compatibility and application area) and supplier strength (company size and years of experience). For single-use filtration systems, the parameters taken into account include the product applicability (connectors used, type of filter, scale of operation, key features and application area) and supplier strength (company size and years of experience). For single-use sampling systems, the parameters taken into account include the product strength (sterilizability and key features) and supplier strength (company size and years of experience). For single-use connectors, the parameters taken into account include the product strength (type of valve / gender, easy to use, application area) and supplier strength (company size and years of experience).

Chapter 9 features tabulated profiles of the key players providing single-use downstream bioprocessing technologies, which are headquartered in North America. Each profile includes an overview of the company, information on the financial performance (if available), service portfolio, product portfolio, recent developments, and an informed future outlook.

Chapter 10 features tabulated profiles of the key players providing single-use downstream bioprocessing technologies, which are headquartered in Europe and Asia-Pacific. Each profile includes an overview of the company, information on the financial performance (if available), service portfolio, product portfolio, recent developments, and an informed future outlook.

Chapter 11 presents an in-depth analysis of various patents that have been filed / granted for single-use downstream bioprocessing technology, till December 2021, highlighting key trends associated with these patents, across type of patents, publication year, application year, issuing authorities involved, type of organizations, emerging focus area, patent age, CPC symbols, leading patent assignees (in terms of number of patents granted / filed), patent characteristics and geography. It also includes a detailed patent benchmarking and an insightful valuation analysis.

Chapter 12 provides a detailed brand positioning analysis of the key industry players (including single-use chromatography system developers, single-use filtration system developers, single-use sampling system developers and single-use connector developers), highlighting the current perceptions regarding their proprietary products by taking into consideration several relevant aspects, such as experience of the manufacturer, number of products offered, product diversity, and number of patents published.

Chapter 13 provides an informed estimate on the current and future demand for biologics and demand-supply scenario for biologics manufactured using single-use downstream bioprocessing technologies, for the period 2022-2035.

Chapter 14 features a comprehensive market forecast analysis, highlighting the future potential of the market till 2035, based on multiple parameters, such as overall downstream bioprocessing equipment market, and share of single-use technology. It includes an informed estimate of the evolution of the market for the period 2022-2035. We have segregated the current and future opportunity have further been segmented on the basis of scale of operation (preclinical / clinical and commercial), type of product (single-use chromatography systems, single-use filtration systems, single-use sampling systems and single-use connectors), and key geographical regions (North America, Europe, Asia-Pacific, Latin America, MENA and Rest of the World).It is worth mentioning that we adopted a top-down approach for this analysis, backing our claims with relevant datapoints and credible inputs from primary research.

Chapter 15 is the summary of the overall report, which presents insights on the contemporary market trends and the likely evolution of the single-use downstream bioprocessing market.

Chapter 16 is an appendix, which provides tabulated data and numbers for all the figures provided in the report.

Chapter 17 is an appendix, which contains the list of companies and organizations mentioned in the report.
Read the full report:

About Reportlinker
ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need – instantly, in one place.

__________________________


        



Source link